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The frictionless vibration of a circular stamp on an elastic two-layer base is 
considered. The boundary value problem reduces to an integral equation of the 

first kind. Iis unique solvability is proved in some class of functions and an ap- 
proximate method of solution is proposed, based on the factorization of the func- 

tions. Programs are constructed which realize the method on a digital compu- 

ter, and results are presented of a numerical analysis of the solution. 

1, By known methods taking account of radiation conditions, a boundary value prob- 
lem is reduced to the solution of an integral equation of the following kind (q (p) isthe 
amplitude value of the dimensionless contact stress under the stamp, and f (r) is the 

amplitude value of the stamp vibrations at the point r): 

Kn0=[ k(r, P)4(P)P@ = 8nf(r) (1.1) 
0 

k (r, P) = 5 K@)Jo(w)Jo(up)u du 

Here 

K(u) = H,(u) + 
H(u)~,~(U)--2L(u)ll(u)h,u+M(u)h,2(u) 

L2(U)--M(u)H(U) 

L (u) = L, (u) - Lz (u), M (u) = Ml (4 -!- M,(u) 

H (U) = HI (U) + Hz (U), Li (U) = Li+ (U) + Li- (U) 

Mi (U) = Mi+ (U) + Mi-(u), Hi+ (‘) + Ni- (‘) 

Z,(u) = L,_(u)- Lr+(u), h(u) = H1-(4 - K'(u) 

L,+(u) = 
y1 ch o1 sh a2 - a,02 ch a2 sh u1 

PI&+ (u) 

(1.2) 

La’ (u) = Ls- (u) = ?$sz;$s 

Ma+ (u) = Ma_(u) = - 2p2e;,.;;U, 

Hz+(u) = HZ-(u) = - 2;;$;;;l 

A2 (4 -= ~1 
‘2 

- u2q’a2’, y1 = u2 - V&2 

e,2 = (1 + YJ (1 - 234 &2X22 / (1 - YJ 

822 = 2(1 + YJ I9 X22, o.i2 = u2 - ei* 
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The functions .&r- (u), &f,- (u), Hi- (u), Al- (ZL) are obtained from L,+ (u), 

MI+ (a), Ii, + (4, &+$u) by re ~1 acing the sinh by co&, cash by sinh in all the ex- 
pressions ; VI, V2 are the Poisson’s ratios, pi, ps are densities, Ei, Es are the Young’s 
moduli for the material of the layer and the material of the half-space, respectively, A 

is the dimensional radius of the stamp, h is the dimensional layer thickness, and w is 

the frequency of stamp vibration (the time dependence is described by the function 
e-lo?. 

We note the following general properties of the function K (u). This is an even func- 
tion, analytic in a complex plane with slits in the first and third quadrants which connect 

the points u = z& 8,’ and u = -j, 8s’ 
with a point at infinity. Moreover 

K(u)= -g [$ + ~W1)l* 

In addition to the branch points, the func- 

tion K (u) can also have zeros and poles 
on the real axis. Their distribution depends 

essentially on both the elastic and geomet- 

ric parameters of the problem andon the 

frequency of system vibration. 

The complex form of the function K(u) 
permits studying the distribution of the real 
zeros and poles in each specific case only 
by using a digital computer. Curves of the 
zeros {dashes) and poles (solid lines} of the 
function K (u) as a function of the re- 

duced frequency x2 for es = 1.25, 

Vl = 0.27, v2 = 0.26, & = l.2.106 
and Ez = 1.5*10* are presented in Fig.1. 

The contour r in the representationof 
the kernel of the integral equation (I. 1) 
lies in the right half-plane and coincides 
everywhere with the real axis, with the ex- 

ception of domains containing the real poles, zeros, and branch points which are bypassed 
from below. 

td, Then method used later consists in replacing the initial integral equation by some 
approximation which is solved sufficiently easily. Use of this method is possible only for 
unique solvability of the initial equation [I]. In this connection, let us prove the unique 
solvability of (1,1) in the case under consideration. 

The following uniqueness theorem is valid for integral e~ations of the form (1. Q), 
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tet an even function Ii: (u) with the analyticity properties listed above (the presence 
of real branch points and single poles) and with the behavior (1.3) be such that it hasdo- 
mains {AZk, A2k+ll on the real axis where it is real, and domains @%k, B,,,] where 
it is complex. Let the zeros and poles of the function K (u) lie only in the real regions. 

Theorem. If the residues of the function K (u) at the positive poles ace of the same 
sign as the imaginary part, the integral equation (1.1) cannot have more than one solu- 
tion in the space L,, ct > 1. 

Proof. Assuming that 4 (r) E L,, a > 1, we conclude that 

Q(U)3~4(P)~O(UP)PdpELg, 1<B<2 (2.1) 

0 

Let us multiply the homogeneous equation (I.. 1) by the function (I’ (r) (the complex- 
conjugate), and let us integrate on the half-axis 10, oo]. We then deform the contour 
I’ onto the real axis. Taking account of thesimplicity of the poles and the regularity of 
the function Q (u), we arrive at the relationship 

n %ktl 

t kzo 'j ImKwlQwladu + 
air 

(2.2) 

v 1 
0 

Re K (4 I Q 04 I2 du -I- in ril (W1 (C~I’}-~ f Q K2) I2 = 0 
s 

(5, are real positive poles of the function K (u), r = 1, 2, . . ., iV). By separating 
real and imaginary pacts in the last equation and taking account of the conditions of the 
theorem, we conclude that 

Q (u) = 0, u E [B,, Z&l 

By virtue of (2.1) the function Q (u) is entice, hence Q (u) s 0, It hence follows that 

9 P) = 0. The condition Q (r) E L,, a > 1 is used to give a foundation to the con- 
vergence of the integral in the relationship (2.2). The theorem is proved. 

To give a foundation to the solvability of the integral equation (1. l), we reduce it to 
a Fredholti equation of the second kind. Several methods exist for such a reduction [2, 
31. The Fredholm equation which is also used to construct the approximate solution is 
presented below 

F (4 = -& \ 
I% 

q(r) = 1 Jo(k)K-L(%)F(%)%d% + $ J~(~r)K,-l(u)?~tu)~zt~)du c2a4) 

c (a, 24)” 
u - - x1 (u) x2(u) G (a, 24) - (a + u), ‘>t&) = a I/auHF) (uu) 

G&z, u) = acdp (au) era (ua) - ZmYp (au) Jl (w) 

co G’S f)F(E.) 
D@)= \ (42-&)K(E) 

0 0 

The contours r, and rz lie in the domain of regularity of the function K(U) and 



156 V. A. Babeshko, I. 1. Vorovich and M. G. Seleznev 

their ends approach infinity in the lower half-plane, where the contour rs lies above 
the contour pi. The contour 0 consists of the contour r and its symmetric image with 

respect to the origin, in the left half-plane. 

Equation (2.3) reduces to a Fredholm equation of the second kind on the contour I’a 
in the class of functions continuous with weight zh, 0 < h < 1. 

We shall consider the function f (r) to be twice continuously differentiable. We re- 
present the operator in the right side of (2.3) in a form acting from the contour PI again 
to the contour l?,. To this end, we represent it as follows by continuing the double integ- 

ral analytically in the lower half-plane: 

Here 2 lies below the contour Ta while the contour ra lies above the contour 1, 
Let us select the contour l’s in the domain of regularity of K (4) on which 

1 - c (2, 2) / (22) # 0 

We express g (a) from the relationship obtained and insert it into the relationship (2.3). 

We consequently obtain an equation for y (z) on the contour 1,. It can be proved that 
the operator in the right side of this equation is completely continuous in the space of 

continuous functions on the contour l’i with weight zhy 0 < h < 1. 

Since (2.3) is a Fredholm equation and has a unique solution, as has been proved, then 

it is solvable. Therefore,for every f (r) E c2 (0, a) there is found a unique function 

q (r) E L,, a > 1 which converts (1.1) into an identity. 
We now study the properties of the function g (r). It follows from the representation 

(2,3) that 
.444-c&I> 2 --+oo, 2 fz ra 

Then 

q (r) _- c (a - r)+, r 4 a. I r I < a 

(2.5) 

Therefore, Q (r) v/a2 - ra 6% c (0, a). Consequently, the initial integral equation is 
correctly solvable and the following correctness relationships hold 

II cl [?b = Ii Q v-a, - f I/40, a) <II% 

Now, using the theorem of the theory of linear operators, we can approximate the func- 
tion K (u) by the function K* (U) proceeding from the condition 

Here e > 0 is a sufficiently small number, and the operator should act from the space 
cb to the space c2. This latter permits replacement of the function K (u) by another, 
close to it. 

The possibility of constructing an approximation to any degree of accuracy is achieved 
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by using interpolation polynomials [4]. In particular, the approximate function K* (u) 
can be represented in the form M M _._ 

K* (24) = c2 J-J (u” - z;2) [l/z2 + B2 j-J (US - 5jy1-l (2.6) 

Consequently 

. 
14 j=l 

K;(U) = C i (U 2 Zi) [VB {("+Sj)]-' 

i=l j=l 
(2.7) 

The branch point u = f iB is selected as a function of tile required conditionsofthe 

problem (the magnitude of the parameter a). We select B from the condition Ba> 1. 
Inserting K; (u) into (2.3) and deforming the contour of integration downward to the 

branch point, we obtain the representation 

(2.91 

y (z) = -& \ M Y(--'j)A(-zjl z, +&B(z) (2.8) 

where 
rt* 

y (;g$* z, du + &C 
j=l 

lK++ (- 'j)l' 

fl (u, z) = A* (u, z) + \ 
rrO 

;+~;)(~Jo~ $) da 

B(z) = B*‘(z) + \ D (a) >ltJ XI (~1 da 

rr” 
M 

A* (24, z) = 2ni 
z 

C(-L u) 

i=l 
(6i + 2) (6? - @I [I&* (- EJ)-‘I’ 

M 

B* (z) = - 2ni 
c 

D (- $1 XI (-- 63 

14 (2 + 51) I{Kt* (- cpl’ 

The contours ri” are obtained here as a result of deforming the contours rt in the lower 
half-plane. It can be shown that for sufficiently small B the integral terms are small 
and can be discarded. Discarding the integral terms in (2.8) and (2.9) and setting z = 

- z, in (2.8), we obtain a linear algebraic system to determine y (- z,), m = 1, 
2 7 * - *, M M 

Y(-%I) =&C 
Y (--j) A* (-zj* -zm) 

[K+*(-zj)]’ + 4x2 -!-B* (- z,) (2.10) 
j=l 

Having determined the values of Y (- 2,) from (2. lo), we can write an approximate 

expression for y (z) M 

Y (G&C 
Y(- zj) A* (- zjV ‘) 

[K+* (- Zi)l’ + &B*(z) (2.11) 

j=l I 

We obtain the solution of the initial problem by substituting the approximate value of 

y (z) from (2.11) into (2.4). Without limiting the generality, we can set in (1.1) 

f (r) = fJ, (qr), f = const, q = const 

Then the approximate solution of (1.1) can be written as 
(2.12) 

The formula obtained for p (r) is effective for internal points of the domain. The beha- 
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vior as r --t a is described by (2.5). 

3. In the problem under consideration, the function K (u) satisfies the propertieslis- 
ted in Sect. 2. For fixed 31s we hence have a real interval [A,, A,] = [(Is’, 00 ] 

and a complex interval [II,, B21 = [0, &‘I. The signs of the imaginary component 
and the residues at the poles, which all turn out to be negative in the example presented 
below, are verified without difficulty in a numerical investigation of the real and imag- 
inary parts of the function K (u) 

Let us present the sequence of operations needed to compute the state ofstress and strain 
by the method of this paper. 

1). Having constructed the integral equation (1. l), we approximate the function K (u) 

in (1.2) by an expression of the form (2.6) on the axis [O, 001 (the real zeros and poles 
of K (u) are evaluated first). Approximating polynomials of different kinds can beused 

here C3, 41. 
2). On the basis of the approximation introduced, we solve the system (2.10). We con- 

sequently obtain the distribution of the contact stresses in (2.12). 
At this time the algorithm presented has been realized by a program permitting exe- 

cution of the computations for any relationships between the parameters of the problem. 

As an illustration the following case is considered: 

.$ = 1.25, r, = 0, E, = 1.2. io6, E, = 1.5.108, vi = 0.27, v, = 0.26, x, = 1.1. 

The coefficients of the approximations (2.6), (2.7) have the values (M = 7): 

sr = 1.760366, & = 2.092845, z2 = 1.82099 + 0.6324Oi, zs = 0.518977 i- 0.5784461, 
Z, = - 2.57811 + 1.65149i, sli = - 1.58223 + 0.2608711, zI = - 0.752302 + 0.608482& 

tT = 2.99651 + 4.76229i. 

The quantities 5i, i = 2, 3 ,..., 7 are selected from all the values 

5000”‘* (-8‘89814 + 0,57663ij-‘1” 

according to the condition Im gi > 0. The error in the approximation presented does 
not exceed 1Ol0 for small I u 1, and is practically zero for ] u ] > 10 . Graphs of the 

real and imaginary components of the amplitude function q (r) are presented in Fig. 1 
for a = 1: The real part of q (r) is superposed by the solid line, and the imaginary part 

by the dashes. The expression 
o, (r) = Re [q (r) e-k’?, r<a 

yields the magnitude of the stresses under the stamp. 
The displacement of points of the layer surface outside the stamp can be obtained 

from (1.1) for known Q (r) by evaluating the integral for a < r. In the case f (r) = 
fJ, (qr) the approximate value of the amplitude function of the displacements can be 

written in the form 
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The expression 
w (r) = Re I W (r) e-i”*] 

yields the magnitude of the displacements of the layer surface outside the stamp. 

It should be noted that the formulas presented for the amplitude function of the con- 
tact stresses and the layer surface displacements outside the stamp are written down un- 
der the assumption that all the complex zeros and poles of the function K * (u) are 

simple. This is realized automatically in the construction of the function K* (u) in 
the form (2.6). 

The problems examined may be used as a model in constructing the initial data for 

an investigation of the transmission of vibrations between foundations, as well as the 
simplest model for a vibration investigation of soil by means of data on wave field ex- 

cited on the surface. Namely, by having a sufficient set of solutions of the problem for 

different elastic and geometric values of the base, the parameters of the base canbepre- 
dieted from the condition of best agreement between experimental and theoretical re- 

sults by comparing the amplitude and phase values of the wave fields. 

We note that the problem considered for an ideally elastic foundation is more complex 
than the corresponding problem for a viscoelastic medium. The method proposed is va- 
lid for this latter case as well. 
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